
J. Fluid Mech. (1980), vol. 98, purt 1 ,  p p .  1-31 

Printed in Great Britain 
1 

A modelling of large eddies in an axisymmetric jet 
By E.ACTON 

Engineering Department, University of Cambridge7 

(Received 19 August 1977 and in revised form 6 March 1979) 

Crow & Champagne (1971), Bechert & Pfizenmaier (1975) and Moore (1977) have 
observed that the growth, mixing and noise production of jet flows are sensitive to 
harmonic forcing. This paper describes an attempt to model numerically certain 
features of these flows. The model flow is restricted to be axisymmetric and is conse- 
quently unrepresentative of the detailed structure in a real jet. Nonetheless, it is found 
that  reasonable qualitative agreement exists between the results of the model and 
experiments as far as the large eddies are concerned. This suggests that a substantial 
part of the large-scale structure in a jet is essentially axisymmetric. Harmonic excita- 
tion is also applied to the model jet and the changes in frequency and amplitude of the 
excitation cause distinct changes in the wavelengths of the jet eddies. This resulting 
large-eddy behaviour is consistent with many features of the nonlinear behaviour 
observed experimentally in forced jets. 

1. Introduction 
Flow visualization techniques have revealed a large-scale structure in turbulent 

shear flows. In  their experiments on subsonic turbulent jets, Crow & Champagne (1971) 
showed that the large-eddy structure and the growth and mixing of the jet were sensi- 
tive to harmonic forcing. They suggested that the large-scale development of the jet 
up to an axial distance of five diameters could be completely controlled by slight exit 
plane forcing. Crow & Champagne found a ‘preferred’ frequency for the development 
of the jet which, non-dimensionalized by the jet diameter and exit velocity, was a 
Strouhal number St = 0.3. They believed that this frequency was ‘preferred’ because 
the wave attained the highest possible amplification under the combined effects of 
linear amplification and nonlinear saturation. 

Chan (1974) measured the spatial development of pressure waves in a, round turbu- 
lent jet (Reynolds number Re = 2-6 x lo5) subject to internal acoustic excitation. The 
pressure disturbances grew to a maximum some distance from the nozzle exit and then 
decayed. The most amplified mode was a t  St = 0.5 in the shear layer and a t  St = 0.35 
on the jet axis. Bechert & Pfizenmaier (1975) excited internally a subsonic jet with 
harmonic plane acoustic waves, They discovered an altogether new and unexpected 
phenomenon: there was an associated amplification of broadband jet noise. The 
frequency of the forcing was St = 0.5, and the ratio of the r.m.s. value of the exit 
velocity fluctuations to the mean velocity a t  the nozzle exit was 0.0038. The radiated 
sound was caused by the acoustic excitation but did not differ much in angular and 
spectral distribution from the unforced jet noise. Lip noise and flow separation were 
shown to be irrelevant to the effect. 
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The increase of the broadband noise generation of a forced jet was discovered 
independently and concurrently by Moore (1977). A turbulent jet (Re = 3 x lo5) with 
a fairly thick turbulent boundary layer was excited internally with acoustic plane 
waves. Above a certain level of forcing, the response of the jet was nonlinear and the 
broadband pressure fluctuations, both inside the jet and in the far field, were affected. 
Below a Mach number M = 0.7, the behaviour was only weakly dependent on Mach 
number and all jets showed a peak increase in broadband noise when forced with 
St = 0.35. As the Strouhal number was increased, this increase in broadband noise 
lessened until there was a resulting decrease in broadband noise for St > 1.5. Moore also 
visualized the flow for St < 1 and observed that a t  forcing levels a t  which the response 
of the jet was nonlinear, there was a dramatic ‘locking-on’ of the large eddies to the 
excitation frequency. 

It is thus clear that  the large eddies in turbulent jets and their effect in the far field 
can be controlled by harmonic forcing. It is apparent from the pictures of Moore that 
the forcing was changing the eddy wavelengths, and also that a substantial part of the 
large-eddy structure is axisymmetric. It is therefore of interest to attempt to model 
this large-eddy development in a turbulent jet and investigate the effect of harmonic 
forcing. Following our previous study of similar flows (Acton 1976)) we attempt here 
such a modelling and represent the jet shear layer by discrete vortex elements and 
consider an axisymmetric jet developing from rest. Ring vortex elements are used to 
represent the jet shear layer and its computed development into large eddies is investi- 
gated with and without forcing, Such a modelling of a jet flow by discrete vortex 
elements is not new. Davies & Hardin (1973) successfully modelled a starting jet in 
that way. The use of the model to visualize the effect of harmonic forcing on the large- 
scale structures is new and represents a natural extension of the earlier work. 

We are now attempting to model a developing axisymmetric jet and therefore some 
representation of the nozzle flow is necessary. We do not satisfy the boundary condi- 
tions exactly; we define a parallel flow in the jet pipe and represent it by ring vortex 
elements. This is an approximation of the effect of the jet pipe on the jet shear layer 
and diffraction a t  the nozzle edge is not modelled a t  all. As in our previous study, the 
smallest scales of the motion in the shear layer are not modelled; a smoothing core is 
applied to each ring element neighbouring elements, and avoids the need to evaluate 
these apparently active small-scale motions. 

This axisymmetric-jet model is that of inviscid flow. We found that the absence of 
viscosity was unimportant in our previous model but in this case we shall have as a 
consequence areas of potential flow in regions where they are known to be impossible. 
For example, the entrainment of irrotational fluid is we think represented realistically 
but in our model the entrained fluid remains unrealistically irrotational because the 
viscous diffusion of vorticity over small scales is excluded. I n  many areas of the model 
flow, although the vortex elements are widely distributed, the flow outside them 
remains potential. This is not turbulence but may easily be thought of as part of the 
large eddy motion which is known to be essentially inviscid (Townsend 1976). There- 
fore, because in our model the smallest scales of motion are smoothed out, we can only 
be concerned with the large-scale motion; it is the large eddies which have been shown 
to be so significant in experiments that we are attempting to simulate. Thus, in our 
computations, we expect not to look closely a t  the motion of individual elements but 
to take a global view of the jet development in terms of the larger eddies. The effect of 
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forcing on the large-eddy development can thereby be modelled and from that model- 
ling we hope to  provide some interpretation of the features observed experimentally 
in forced jets. 

The results of our jet model are described in $ 3 and $4. As in our earlier study, con- 
centrations of vorticity evolve in the shear layer, and are seen to interact by rolling 
around one another and coalescing. However, the location and frequency of this 
occurrence now depends on the relative size and spacing of the eddies in the shear layer, 
which are greatly altered by the forcing, Despite the model’s obvious and several 
shortcomings, the computed unforced jet flow is similar to those observed experi- 
mentally. The mean flow development, shown in figure 7, compares well with that 
observed experimentally in the mixing region and the initial entrainment rate for this 
inviscid jet model is also in reasonable agreement with that observed experimentally 
as shown in figure 16. The forced model jets also show features observed in the 
experiments. These forced jets were computed for a necessarily short time; the jet 
upstream of the starting vortex was allowed to develop for an axial distance of 
approximately six diameters. This is just sufficient to observe the changes in eddy 
development in the mixing region; the computation was taken no further because of 
the large demand on computer time. 

We show for these forced model jet flows that, in the Strouhal number range 
0-3 < St < 2.0, forcing of sufficient amplitude can excite the jet eddies a t  the forcing 
wavelength. When St = 0.3, these eddies are very large and form a t  X / D  N 2.0. When 
the jet is forced at St = 0.5, the large eddies form a t  X/D ci. 1.0 and persist for several 
diameters downstream. At higher frequencies, these eddies which form a t  the forcing 
frequency are small and are quickly lost by coalescence. This behaviour is qualitatively 
consistent with many features of the nonlinear behaviour of forced jets described 
earlier and we now believe that the similarity between the computation and experiment 
is not purely coincidental but results from the fact that the real flow has significant 
axisymmetric large-scale structure of the type we model. From the model we can 
investigate aspects of that structure which cannot be investigated experimentally and 
thereby make possible increased understanding of these important flows. 

2. A discrete-vortex model of an axisymmetric jet 
The jet shear layer is modelled by the superposition of vortex ring elements. We 

consider first the velocity field of a single vortex ring. We use cylindrical co-ordinates 
(5, a, q5); where, for an axisymmetric ring, x is the direction of the ring axis, a i s  the 
direction of the ring radius and there is no variation with 9, the azimuthal angle about 
the axis a = 0. The Stokes stream functio:i @(x, a) of a circular vortex of strength K a t  
(x’, a’) is given by Lamb (1924, art. 161): 

(1) 
K 

@(z, a) = -- (TI+ r2) ( K ( 4  - E(4),  

r1 = ((z - x’)2 + (a - a’)2)&, 

a = (r2 - r1)/(r2 + r1L 

271 
where 

r2 = ((x-z’)2+ (a+a‘)2)*, 

and K ( a )  and E ( a )  are complete elliptic integrals of the first and second kinds. 
r z  
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The components (u, v) of the induced velocity are obtained from the stream function 

and 

Any curved vortex filament has a self-induced velocity. Unless the filament has 
some finite cross-section, this self-induced velocity is infinite. The self-induced velocity 
u, of a ring vortex of small, approximately circular, cross-section is given by Saffman 
(19701, 

where b is the radius of the cross-section. For constant circulation K ,  

B b = -  
U't 

where B is constant. Therefore equation (4) becomes 

A value for B must be chosen, and to keep the error term in (5) small we require 
B < a'% but apart from this we see that the value of u, remains relatively insensitive 
to the choice of B. The size of the core affects not only the value of the self-induced 
velocity but also the mass of fluid that would be carried along with the vortex ring, cf. 
Batchelor (1970), figure 7.2.4. These vortex rings are used in our model as elements of 
the flow in a cylindrical shear layer, with a value of B = 0.001. That value was chosen 
so that the body of the fluid moving with an isolated ring element would be small and 
the self-induced element of the convection velocity was less than one-fifth of the 
velocity due to all the ring elements in the shear layer. We showed by numerically 
testing different models that the flow calculation was insensitive to this choice of core 
parameter. It is a much less critical issue in a problem with an array of vortex rings 
than it is in the case of a single vortex element though even then the velocity is 
insensitive to its variation over quite a large range. Nevertheless, the choice is really 
quite arbitrary, and we can justify it only by the eventual outcome of the calculations. 
With the computer effort available, we were unable to satisfy exactly the boundary 
conditions for a jet pipe surface. We instead represented the flow inside it by a long 
array of identical vortex ring elements. The self-induced convection velocity of such 
a cylindrical vortex tube was calculated, and these jet-pipe elements were driven at  
this velocity until they reached the jet-pipe exit plane. A t  this point, they became 
part of the jet flow and were free to move under the combined velocity fields of the 
other jet-flow elements, the jet-pipe elements and of course their own self-induced field. 
The total number of ring elements in the jet-pipe array was kept constant; new elements 
were introduced a t  the upstream end of the jet-pipe array which was sufficiently long 
for this to have no discernible effect on the jet-flow vortices. 

The jet-flow array of elements consisted of a double row of ring elements to provide 
definition to the large structures which might evolve. The axial spacing of this double 
row was approximately 0.050 (where D is the jet-pipe diameter) and the radial 
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separation was 0 . 0 2 5 0 .  The subsequent position of each ring element was calculated 
from the total velocity induced on each ring. This velocity was the sum of the self- 
induced velocity ( 5 ) ,  and the total induced by all other vortex elements, computed 
from equations ( 2 )  and ( 3 ) .  The computation time required to calculate these velocities 
was very large and thus a fairly coarse time-step was used which was held constant 
throughout the computation. The new position of each vortex ring is given approxi- 
mately by: 

~ i ( t  + At)  = ~ { ( t )  + ui(t) At + 
2 )  

therefore 
X i ( t  + At) 2: xi(t) + (3u,(t) - U i ( t  - At))  &At, 

where xi is (xi,vi), the position of the ith vortex ring, and ui is the corresponding 
velocity. 

The computation time was kept down further by neglecting the velocity field 
induced by any ring beyond an axial distance of ten ring radii. Calculations showed 
that the velocity ignored was less than 0.15 yo of the self-induced velocity of a ring of 
equal size, and this would be smaller still beyond ten radii. The effect, though cumula- 
tive, is small compared with the total velocity induced by closer ring elements. 

As discussed for our two-dimensional model, the digitization of the shear layer 
causes small-scale instabilities owing to the high velocities induced by neighbouring 
vortex elements. The smoothing core introduced to suppress this instability is much 
larger than the core specified to calculate the self-induced velocity of each ring. The 
smoothing-core radius was defined as a constant fraction (one fifth) of the ring radius, 
and the velocities within the core were obtained by linearly interpolating along the 
diameter between the two end points at  that radius. 

Additional visualization of the jet development was provided by incorporating it 
streak-line. Inactive elements were introduced at a point outside the shear layer in the 
jet-pipe exit plane and allowed to move in the induced velocity field of the jet. A check 
was kept on the maximum and minimum distances between the points on the ‘dye’ 
line and elements were added or subtracted in order to maintain reasonable definition. 
This is equivalent in the experimental situation to allowing the streak-line to stretch 
or thicken although only the information of the line’s position is retained, and of 
course in our model the ‘dye ’ does not diffuse. 

A non-dimensional time parameter T may be defined, 

T = U o t / D ,  (7) 

i.e. the mean jet flows one diameter in one unit of T; Uo is the centre-line velocity of a 
cylindrical vortex sheet of strength K~ per unit length, i.e. 

uo = KO. 

The jet-pipe array was defined with this strength K~ per unit length. This jet-pipe array 
was driven at  the convection velocity U, of such a long vortex tube; and we calculated 
this velocity to be such that Ud/Uo = 0.54. The time-step used in the computation was 
kept constant at T = 0.0333. 

The effect of forcing was incorporated into the model by causing the driving velocity 
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FIGURE 1 (a, b ) .  For legend see next page. 

and strength of the jet-pipe vortices to fluctuate harmonically. The fluctuating 
strengths and driving velocities were defined 

(8) K = K,,( 1 + A  sin 27rjt), U = U,( 1 + A  sin 27rjt). 

A t  the time each vortex element left the jet pipe, the circulation was fixed at the 
current value, but of course divided equally between the two elements comprising the 
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FIGURE 1 .  The development of an axisymmetric jet represented by discrete vortex elements. 
(a) T = 8.0; ( b )  T = 10.0; (c) T = 12.0.---, dye line; *, vortex elements. 

double row of the jet flow array. A forcing Strouhal number X t  was defined as the 
non-dimensional value of the forcing frequency f, 

X t  = fD/U,. (9) 

The initial radial separation of the vortex ring elements which leave the jet pipe 
determines the jet-pipe exit-velocity profile. This profile was not varied and the 
separation remained constant throughout all the model flows. The resulting velocity 
profile a t  the jet-pipe exit is within the range of those measured by Moore (1974) in a 
study of turbulent jets; he also showed that the jet behaviour beyond X / D  = 1 (where 
X is the axial distance from the nozzle exit) was independent of the nozzle profile 
chosen. That the conditions a t  the jet-pipe exit are in good agreement with these 
experimental observations gives confidence that the model jet is not unrepresentative 
of the real jets. We now consider the subsequent development of this model jet. 

3. The results of the unforced model jet 
Figure 1 (a)-(c) shows stages in the computed development up to T = 12.0. The 

jet-pipe elements are not shown. It can be seen, after the starting vortex has formed, 
that the instabilities grow on initial shear layer and small clumps, or eddies, form 
which interact with each other as they move downstream and evolve into larger eddies. 
At least these qualitative features of a real jet are modelled effectively. The complete 
evolution of the model jet can be described by a series of such pictures but this is not 
very useful for quantifying the details of the eddy motion. A possible means of 
describing that involves the velocities induced by the eddies, and the most useful 
velocity for this purpose is the radial velocity. Figure 2(a)  shows the unforced jet 
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FIGURE 2. A stage in the unforced jet development showing the axial distribution of the induced 

line; *, vortex elements. 
radial velocity at RID = 0.5. (a)  T = 12.0; ( b )  T = 11.4. -, radial velocity trace; - - - , dye 

development of figure 1 (c) with the axial distribution of radial velocity V superimposed. 
The velocity is measured a t  R I D  = 0.5, where R is the radial distance from the jet 
axis, and the velocity is plotted with V = 0 along R I D  = 0.5. Every large eddy in the 
development has a clear effect on the radial velocity; there is a distinct trough before 
the eddy and a crest after it. The dye-line in the figure indicates that the large eddy 
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I 

FIGURE 3. The axial distribution of radial velocity a t  
equal time intervals; unforced jet. 

located between X I D  = 3 and X / D  = 4 has resulted from the coalescence of the 
two smaller eddies. The development a t  an earlier time, figure 2 ( b ) ,  just before the 
coalescence, shows the effect on the radial velocity trace. The crest due to the first eddy 
and the trough of the second are very close together and become indistinguishable 
once the two eddies have lost their separate identities. 
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I 
FIGURE 4. The axial distribution of axial velocity rtt 

equal time intervals; unforced jet. 

These radial velocity traces are calculated a t  small time intervals during the jet 
development and then plotted with consecutive origins slightly displaced from each 
other to form a composite picture of the jet development in which each eddy has a 
well-defined axial position. This is shown in figure 3, where the radial velocity traces 
given in figures 2 (a) and ( b )  are shown as dotted lines. The traces are plotted a t  intervals 
of T = 0.1 and values of T measured from the start of the jet development are shown. 



Large eddies in an axisymmetric j e t  1 1  

RID = 0.8 

t-qvTv: I r n l h l  
I 

I I I -  i I /  I 
I I 

I 

I I 

I 
I I  I I  I 

I I  
R I D z 0 . 2  I I 

I 
I --A Y 

W 8.0 19d"-60 21.0 224 
3.0 9.0 1 0 . O y o  12.0 13v14.0 15.0 16.0 

- 
T 17.0 

FIGURE 5 .  Time history of radial velocity fluctuations at X I D  = 2. 
- - _  , instants when eddy centres pass. 

Each trace is terminated at  an arbitrary point in the starting vortex which is thus not 
shown. 

The radial velocity traces in figure 3 show the random pattern of events in the 
unforced jet development. The plotting scale is such that the crests of the traces, which 
occur immediately downstream of an eddy, form envelopes of approximately constant 
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FIGURE 6. Time history of axial velocity fluctuations at  X I D  = 2. 
_ _ -  , instants when eddy centres pass. 

slope and disappear when two eddies coalesce. This is seen clearly at IT = 11.4 as 
previously described. The axial spacing between eddies is also apparent and therefore 
some indication of the relative sizes of the eddies is given. It can also be seen that no 
distinguishable eddy forms for a t  least half a diameter downstream of the jet-pipe exit. 
The line X I D  = 2.0 is shown in the figure and the estimated positions of the eddies 
a t  this station are marked with crosses. 
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The corresponding axial velocity traces calculated at  RID = 0.5 are shown in 
figure 4. It is immediately clear that all eddies in the jet development are not repre- 
sented. A measurement of axial velocities through the centres of vorticity of a series 
of identical equi-spaced convecting eddies would not distinguish them, and here only 
when the centres of vorticity are above or below RID = 0.5 is there a corresponding 
crest or trough in the trace. This is shown clearly by the marked eddy positions at  
XID = 2 (from figure 3). The envelope of the crests represents the positions of the 
downstream member of a coalescing pair; at  this radial position, peaks in axial velocity 
are only indications of eddy activity. 

The fluctuating components v of the radial velocity signals a t  XID = 2 are shown 
in figure 5 a t  RID = 0.2-0.8. It can be seen that owing to the smoothing that is 
inherent in the jet model, the traces do not have the high frequency ‘turbulent’ 
character observed in the hot-wire signals of real jets. The dotted lines indicate the 
instants when an eddy centre is a t  this axial position, estimated from figure 3. At 
RID = 0.5, all eddies have a clear effect on the traces whilst, away from the centre of 
the mixing region, the effect of the smaller eddies becomes less marked. The probability 
density functions for these signals are approximately symmetrical as found by Moore 
(1974). 

The corresponding fluctuating components u of the axial velocity signals are shown 
in figure 6. The eddy positions (time) are indicated. In  the inner part of the jet 
(RID = 0.2, 0-3) the passage of an eddy of sufficient size causes a sharp increase in 
axial velocity followed by a less sharp decrease. In the outer part of the region at  
RID = 0.8 the situation is reversed. At RID = 0.4, which is further inside the jet than 
the ‘centre’ of the eddy, each eddy is distinguished. This is not so at  RID = 0.5 (as 
described previously for figure 4); and a t  RID = 0.6 where only the largest eddies 
would have the major portion of their vorticity outside this position, the peaks are 
infrequent. 

The character of these axial velocity traces can be compared with those found in 
experimental studies of round turbulent jets. Examples of the time history of hot-wire 
signals of axial velocity traces at  X/D = 2 (obtained from X-probe hot-wire system) 
are given by Lau, Fisher & Fuchs (1972) and described further by Lau & Fisher (1975). 
At RID = 0.4, there were regular downward (negative) spikes occurring at  a proposed 
vortex passing frequency; and a t  RID = 0.6 there were fairly regular upward spikes 
at approximately one-third of this frequency. The probability density function distri- 
bution of the axial velocity at  RID = 0.6 had positive skew. These features of the 
axial velocity signals a t  RID 2 0-6 are evidently shared by our model. Furthermore, 
there is qualitative agreement in the symmetry of the probability density function at  
&/D = 0.5. However, on the inside of the jet our model does not show the regular 
downward spikes observed by Lau, Fisher & Fuchs. 

The cause of these measured negative spikes is rather unclear. Lau, Fisher & Fuchs 
suggested that the mixing region consists of a convecting axial array of developing 
toroidal eddies but that this simple model required some extension because the 
velocities induced by such a ‘basic vortex model ’ cause no Reynolds shear stress to be 
generated in the mixing region because each ring induces no axial velocity at this 
radial position RID = 0.5 where the radial velocity is highest. (Actually, this is 
incorrect; for a ring vortex, the streamlines are not circular and there is an induced 
positive axial velocity at  all axial positions.) The positive spikes at  RID = 0-6 were 
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explained by the vortex-induced movement of high velocity fluid from the potential 
core into the low speed side of the mixing region; and the negative spikes a t  RID = 0.4 
by the movement of low-velocity fluid from the outer region towards the potential 
core. However, our model shows that this cannot be the entire explanation, for, if the 
eddies remain axisymmetric, the necessary proximity to the axis of the vortex sheet 
as it moves inwards with the outer slower moving fluid causes a rapid downstream 
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FIGURE 7. The normalized mean velocity profiles of the unforced jet (a )  and comparison with 
several experimental studies (b ) .  (a)  0, X / D  = 1.0; A ,  X / D  = 2.0; 0, X / D  = 3.0; X ,  

X / D  = 4.0; #, X / D  = 5.0;  +, X / D  = 6.0. ( b )  (D, Bradshaw et al. (1964), X / D  = 2.0; A ,  
Bradshaw et al. (1964), X / D  = 4.0; Q, KO & Davies (1971), X / D  = 1.0, 4.0; x ,  Davies et a1. 
(1963), X / D  = 3.0; --, unforced jet, X / D  = 1.0-3.0. 
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-0.6 

FIGURE 8. The variation of the velocity space-time correlation coefficients with axial 
at X I D  = 2, R I D  = 0.5.  ( a )  R,,(6,, 0, 0);  (b)R,,(S,, 0 ,  0). 

separation 

acceleration and actually induces positive spikes not negative ones. We conclude that 
the real case cannot be entirely axisymmetric; we discuss this further in $ 5  and show 
that a rapidly contracting vortex ring is highly unstable and will cease to be 
axisymmetric. 

The mean velocity profiles are calculated by averaging the instantaneous velocities 
beginning a t  the time when the starting vortex had moved sufficiently far down- 
stream not to affect the signal. This means that the available data becomes less with 
increasing downstream distance and therefore, as all data presented here is averaged 
over a necessarily short time, the data at  further downstream stations becomes less 
reliable. The normalized axial velocity profiles of the unforced model jet are given in 
figure 7. The profiles cease to be approximately similar beyond X I D  = 3, a feature 
consistent with the observation of Bradshaw, Ferriss & Johnson f 1964) who found 
that, for X I D  > 2, there was an inward displacement of the shear layer. The mean 
profile for the range X I D  = 1 to 3 is replotted in the figure and this also seems to be in 
reasonable agreement with the several experimental studies shown. 
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FIGURE 9. Contours of the velocity space correlation coefficients with radial separation 
at X I D  = 2. (a )  R,,(O, 82, 0) ; Rzz(O, 82, 0). 

The r.m.8. values of the fluctuations of the jet velocities were also calculated but in 
this respect the model is less representative of a real jet because the model is strictly 
axisymmetric and the radial component must fall to zero on the jet axis. Furthermore 
the axial component is always greater than the radial component within the potential 
core. The centre-line ‘turbulence’ levels are much greater than those measured by 
KO & Davies (1971) and Bradshaw, Ferriss & Johnson (1964). Also their measured 
axial and radial profiles at  X / D  = 2 were found to be approximately equal with the 
maximum value of G/U0 N 0-14 at RID -N 0.5. For the model jet these magnitudes are 
larger, the maximum values are G/Uo N 0.2 and C/U0 N 0.25. The two profiles do not 
have the same shape: the radial component reaches its peak value further into the 
mixing region (approximately a t  the eddy centres, RID N 0.5) than the axial 
component. 

Velocity correlation functions are often measured in experimental studies to estimate 
eddy structures and sizes in the flow. We may estimate these velocity correlation 
functions for our model jet flow. The velocity space-time correlation coefficient may 
be defined: 

U((X, t )  Uj(X + 6, t + 7) 

G,(x, t )  Gj(X + s, t + 7)’ R,,(x; 8 , ~ )  = 

where ui, ui are fluctuating velocities with zero mean; 4,, Gj are the r.m.s. values; 
7 is the time delay and for the axisymmetric jet x = (X, R, 0) and the spatial separation 
5 = (al, a,, 0). We consider first these velocity correlations when 7 = 0. Values of 
R,,(S,, 0 , O )  and R,,(S,, 0 , O )  at X / D  = 2, RID = 0.5 are plotted against SJDin figure 8 
(7 = 0). These may be compared with the values given by Bradshaw, Ferris & Johnson. 
The magnitudes of the model correlation functions are higher than those observed 
experimentally, but show similar features: the R,, correlation crosses the axis at  
SID 2 0.4 and remains negative; the R,, correlation first crosses the axis at  SID 2: 0.25 
and eventually becomes positive again. 
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FIGURE 10. The variation of the velocity space-time correlation coefficients (radial separations) 
with time delay at X I D  = 2 ,  RID = 0.25. ( a )  R,,(O, S,, 0); ( b )  R,,(O, S,, 0) .  

Contour plots of R,,(O, S,, 0 )  and R,,(O, S,, 0) a t  X I D  = 2 ,  for several values of R I D  
and 6,lD are shown in figure 9. These plots are an alternative presentation of the 
information given in figures 5 and 6, and may be compared with the correlations 
measured by Bradshaw, Ferriss & Johnson. Again, the magnitudes of the correlation 
functions are much larger for the model jet. The model radial velocity signals remain 
more correlated across the mixing region than those observed by Bradshaw, Ferriss & 
Johnson; in neither case do they take negative values. Both the modelled and experi- 
mentally observed axial velocity signals are well correlated within the mixing region, 
but the two are quite different across the mixing region. The changes with time of these 
axial and radial velocity fluctuations across the mixing region are shown in figure 10 
where the space-time correlation coefficients R,,(O, S,, 0; 7) and R,,(O, S,, 0; 7) a t  
X I D  = 2 ,  R I D  = 0.25 ,  are plotted against 7. The correlations are qualitatively very 
similar to  those measured by Lau, Fisher & Fuchs, who suggested t,hat these results 
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FIGURE 11. Contours of the velocity space-time correlation coefficients at 
X I D  = 2, R I D  = 0.5. (a)  Rll(6,, 0, 0);  ( b )  Rzz(6,, 0, 0). 

confirmed their proposed extended vortex model. However, the disagreement between 
our model jet correlations and those measured by Bradshaw, Ferriss & Johnson does 
confirm some discrepancy in the axial velocity signals in the jet core; this will be 
discussed further in 9 5 .  

The space-time correlation coefficients with axial separation, Rll(Sl, 0,O; T) and 
R22(61, 0,O; 7) which are shown plotted against &,/D in figure 8 show many of the 
features described by Townsend (1976); e.g. the height of the maxima of the curves 
becomes less with increasing time delay 7, although this effect is more marked for the 
R,, correlat,ion. The radii of curvature with respect to the maxima become greater with 
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increasing time delay and the variation about the maxima becomes more asymmetric. 
The R,, correlation has a narrower variation about the maxima than the R,, corre- 
lation which is in agreement with the measurements of Wills (1964). However, the 
correlation:. measured by Wills (also a t  X I D  = 2, and R I D  = 0.5) are much weaker 
and both correlations fall much more rapidly with T than those shown here. We have 
found that the correlation coefficients for the model jet are higher than those measured 
experimentally. This is probably due to the much ‘cleaner’ signals found here, as 
explained earlier, because the small scales are smoothed in our model. From the 
previous discussion with regard to the velocity traces in figures 3 and 4, it can be seen 
that the R,, correlation is a more realistic representation of the eddy behaviour. These 
eddies are changing with time although not rapidly owing to the small-scale smoothing. 
The axial velocities, however, are only picking out particular eddies which in fact pro- 
vide aless changeable pattern of turbulence and therefore the correlations remain higher. 

Figure 11 shows contour plots of these correlations in which the more rapid fall and 
the periodic nature of the R,, correlations is clear. The regular convecting pattern of 
axial and radial velocity signals is shown by the diagonal ‘bands ’ in the contour plots. 
In  the R,, plot there is a second wealsly correlated band which indicates the temporal 
periodicity in the unforced jet a t  this axial position. The time delay between the 
maximum values of R,, in these bands AT 2: 2.1, which is a ‘natural’ frequency of 
8t 2: 0.47. 

We may use these space-time correlations to estimate the eddy-connection velocity 
U,. The definition most usually adopted is 

which is assumed to be approximately independent of 7. 
Averaging the calculated velocities over 26 values of T,, we found from the axial 

velocity correlations that UJU, N 0-52 and from the radial velocity correlations 
UJU0 e 0.55. There is less variation with 7, in those velocities calculated from the 
radial velocity correlations; this was also observed in experiments by Wills (1964). The 
convection velocities for the modelIed jet can also be obtained directly from an x-t plot 
for the eddy positions. The average convection velocity calculated from such a plot is 
U,/U, 0.56. Wills measured convection velocities from $he space-time correlation 
coefficients and found that a t  X I D  = 2, R I D  = 0.5, from the radial velocity corre- 
lations Q/V, = 0.65 which was equal to the local mean velocity, and from the axial 
velocity correlation L;/U, = 0.61. (U, is the jet exit velocity.) KO & Davies (1971) 
estimated the convection velocity from the axial velocity correlations, using a different 
definition to equation ( 1  I ) ,  and found q/q = 0.58 a t  X I D  = 1.5, RID = 0.5. At other 
radial positions in the mixing region, Wills showed that the convection velocity 
measured fiwm the radial velocity correlations remained approximately constant 
across the mixing region, whereas that calculated from the axial velocity correlation 
was much closer to the local mean velocity. As discussed previously, the radial 
velocities distinguish each eddy and do not change phase across the mixing region and 
thus should give a constant convection velocity. We see that the estimated convection 
velocities for our model jet are much lower than those measured in real jets, and also 
lower than the local mean velocity O/U, = 0.65. 

In this section we have compared the velocity profiles and correlations of our model 
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FIGURE 12. The axial distribution of radial velocity at equal time intervals. 

St = 1.5. ( a )  A = 0.005; ( b )  A = 0.02; (c) A = 0.01. 

jet with the results of many previous experimental studies. We have shown that there 
is in general good qualitative agreement but there are differences in the velocity 
signals in the jet core which may be because the model jet is strictly axisymmetric. 
However, the model jet does reproduce many features of real jets and so we feel that 
we can attempt to use the model to investigate in detail the effect of harmonic forcing 
on the jet development. 

4. The results of the forced model axisymmetric jet 
The forcing parameters, the amplitude A and Strouhal number St are defined in 

equations (8) and (9). The effect of three different values of the amplitude A = 0.005, 
0.02,O-1 is investigated a t  Strouhal numbers of S t  = 0.1, 0.3, 0-5, 1.5,2-0. The effect of 
the forcing on the formation of eddies in the jet may first be quantified by considering 
the development of the radial velocity traces with time. This is shown in figure 3 for 
the unforced jet where the eddy formation is irregular with larger eddies forming by 
coalescence. The effect of forcing on the jet is in general to regularize this development: 
there is some response to  the forcing frequency and this response is usually more 
marked with increasing amplitude. 
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FIGURE 16. The effect of Strouhal number variation on the normalized mean volumetric flow rate. 
Forced jet, A = 0.1: 0 ,  St = 0.1; A, St = 0.3; +, St = 0.5; x ,  St = 1.5; +, St = 2.0. 

Figure 12 shows the time history of the model jet forced a t  a frequency St = 1.5 
and amplitudes A = 0.005, 0.02 and 0.1. This frequency corresponds to  a forcing 
wavelength AID 2: 0-37, assuming a convention velocity U,/U,, 2~ 0.56. At the lowest 
amplitude, shown in figure 12 (a) ,  i t  can be seen that the response is slight: the smallest 
eddies form slightly nearer the nozzle than in the unforced jet, but the development 
remains irregular. However, with increased amplitudes shown in figures 12 ( b )  and ( c ) ,  
the jet development becomes more ordered and the initial eddies form regularly near 
the nozzle a t  approximately the forcing frequency. This is a small eddy size which 
cannot be maintained and larger eddies form from regular coalescence a t  X I D  2: 1 and 
further irregular pairings occur beyond that. Comparison with figure 3 shows that this 
initial eddy size is within the range of those present in the unforced jet and therefore 
a sensitivity to  forcing a t  this frequency is likely. 

However, a t  very low frequencies the jet cannot respond a t  the forcing frequency. 
When St = 0.1, the forcing wavelength would be greater than five diameters which 
would not be a feasible eddy spacing. The development for St = 0.3 (forcing wave- 
length A/D = 1.8) at a forcing amplitude A = 0.02 is shown in figure 13(a). The 
response is similar to  that when St = 0.1 (not shown). The jet appears initially more 
stable and the development is more ordered than in the unforced jet. When the forcing 
amplitude is higher, A = 0.1, shown in figure 13(b), the development appears very 
irregular, but a large eddy spacing is finally reached which is near the forcing 
wavelength. 

As the forcing wavelength is shortened the jet shear layer is more sensitive. Figure 14 
shows the jet development a t  a forcing frequency St = 0.5. At the:lower amplitude 
shown A = 0.02, the initial eddies form a t  X I D  2: 0-6 with larger spacings than in the 
unforced jet. There are single pairings and the final spacing corresponds approximately 
to  the forcing wavelength (AID 2: 1.1). When A = 0.1, figure l a@) ,  the eddy forma- 
tion is very regular and there is an immediate big-eddy structure a t  approximately the 
forcing wavelength. 

At higher frequencies, as we have already seen for St = 1.5 (figure l2),  the initial 
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eddies form at  the forcing frequency but soon coalesce to form longer wavelengths. 
The development for a forcing frequency St = 2.0 is shown in figure 15. When A = 0-02, 
the small eddies form a t  X / D  N 0.8 with a shorter spacing than in the unforced jet and 
a resulting smaller large eddy spacing. At A = 0.1 there is a much stronger response a t  
the forcing wavelength (AID 2: 0.28) which is very small and these eddies have 
disappeared within one diameter. There are several subsequent pairings to give a large 
eddy spacing which is slightly shorter than in the unforced jet. 

The effect of forcing on the development of the mean velocity profiles and ‘ turbu- 
lence’ levels was mostly dependent on the local eddy size a t  any particular axial 
position, and not a consistent trend for each Strouhal number. The volume flux 8 is 
calculated from the axial velocity profiles: the profiles to be integrated were estimated 
from using the method suggested by Crow & Champagne. The resulting volume fluxes 
are normalized with respect to the mean exit value and the axial development is shown 
in figure 16. The features of the eddy development already described are again apparent. 
When Xt = 0.1, the jet is much less developed than the unforced jet, and the rate of 
entrainment d&/dX  is lower. The entrainment rates of the forced jets relative to the 
unforced jet vary with axial position. When Xt = 0.5, the rate is initially higher but 
then falls a t  X / D  = 2.0. Crow & Champagne measured these rates of entrainment for 
X t  = 0.3 and the unforced jet. They showed that, at X t  = 0.3, there is a consistently 
larger entrainment rate than the unforced jet. There is, however, no such behaviour 
observed here. Crow & Champagne confirm the value that dQ/dX  = O*13Qe/D for 
X/D 5 2. This constant value is shown on figure 16 and it can be seen that there is 
good agreement with the entrainment rate of the unforced jet. 

The eddy convection velocities for these forced jets were calculated from x-t plots 
and also from the R,, and R,, correlations a t  X / D  = 1.0 and X / D  = 2.0. These were 
calculated the same way as the unforced jet using equation (1 1). Overall, the average 
convection velocity was U,/U, 2: 0-54, which was not frequency dependent. 

5. Discussion 
The development of a round jet was modelled by an inviscid axisymmetric model 

flow. A major complication of this model was the representation of the nozzle flow. It 
was not possible to satisfy exactly the nozzle boundary conditions and instead the jet 
pipe flow was represented by the field of discrete vortex ring elements; this is an 
enormous idealization of the real case. I n  principle, this problem can be done exactly. 
Green’s function for the pipe is needed; this was given by Levine & Schwinger (1948). 
However, it exists in integral form only and the computation time required to  use it 
would be prohibitive. I n  his experiments on turbulent jets, Moore (1974) showed that 
the large eddy structure and the jet development beyond X / D  = 1 were independent 
of nozzle geometry. Because the jet-pipe exit-velocity profile of our model was within 
the range of nozzle exit profiles studied by Moore, we feel that our choice of approxima- 
tion for the nozzle flow was sufficient. 

Our model flow was axisymmetric. This seemed not unrealistic since Moore (1977) 
had shown that an unforced jet had important axisymmetric and first-order modes; 
and when excited appeared entirely axisymmetric. Also Batchelor & Gill ( 1  962) showed 
that a thin cylindrical shear layer amplifies axisymmetric waves but a thicker shear 
layer is more unstable to  sinuous waves; this indicated that an axisymmetric model 
would be appropriate to the early mixing region of a circular jet. 
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A snioothing core had to be applied to each vortex ring element in the jet flow to 
suppress the small-scale instabilities caused by the high velocities induced on closely 
neighbouring vortex elements. This limited the model to the large-scale motions but it 
is these large eddies which have been shown to be important in many experiments. The 
large eddy motion is known to be essentially inviscid (Townsend 1976) but the absence 
of viscosity and the axisymmetry of the model does mean that certain important 
elements in turbulence were not represented. There was no diffusion of vorticity and 
hence entrained irrotational fluid remained irrotational and areas of potential flow 
existed in the model where they are known to be impossible. The model contained no 
streamwise component of vorticity, which is important in the cascade of energy transfer 
to  the smallest scales. However, although certain aspects of real turbulence are absent 
in our model, we think that we have modelled correctly many aspects of the large-eddy 
motion which determine the mean flow in the jet. 

Actually, in many respects the qualitative agreement of the results with many 
experimentally observed flows is good. The normalized mean velocity profiles of the 
unforced jet given in figure 7 are in reasonable agreement with several experimental 
studies shown. There is agreement between the initial entrainment rate for the 
unforced jet and the measurements of Crow & Champagne (1971). This indicates 
that the entrainment process in the initial stages of the jet development, a t  least, is 
essentially inviscid, and small-scale mixing is unimportant. This was observed by 
Dimotakis & Brown (1975) in a water mixing layer visualized by dye, when the 
entrained fluid penetrated far into the mixing layer before any small-scale mixing 
occurred and remained associated with the large-scale motion. As we have shown in 
our two-dimensional model of eddy coalescence (Acton 1976), the ideas of Brown & 
Roshko (1974) that entrainment involved the trapping of irrotational fluid between 
pairing eddies seem entirely plausible. The initial violent roll up of the initial shear 
layer when the forcing amplitude was high a t  S t  = 0.5 was sufficient to produce a high 
entrainment rate without pairing as shown in figure 16. However, as the eddy did not 
increase in size further, this rate decreased downstream of the eddy formation. 

The velocity space-time correlations in the mixing layer showed many of the features 
described by Townsend (1976). There was good agreement in the velocity space-time 
correlation coefficients across the mixing region with the measurements of Lau et al. 
(1972); this is despite the discrepancy between their measurements and our model axial 
velocity signals on the inside of the jet. The velocity space correlation coefficients 
showed many of the features observed by Bradshaw et al. (1964) but the axial velocity 
signals correlated across the mixing region were quite different. There is evidence that 
the flow on the jet core is not correctly modelled, for example the axial velocity signals 
observed by Lau, Fisher & Fuchs showed regular negative spikes which are not 
apparent in our unforced model results (figure 6). The complete reason for this dis- 
crepancy remains unclear, but it is possible that this difference might be caused by the 
real jet losing its axisymmetry near the jet axis. As a large eddy transports fluid 
towards the potential core of the jet, the entrained vortex ring elements contract. It is 
possible that this contraction is unstable and leads to a lack of axisymmetry, in the 
real jet core, which has not been modelled. 

We can investigate this for an isolated vortex element and compare the relative 
stability of contracting or expanding flows. We consider the changes in the radial 
component of vorticity caused by small radial perturbations in the ring geometry when 
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the ring moves under the influence of a source (or a sink) a t  its centre. This is a model of 
an expanding (or contracting) axisymmetric element of shear layer vorticity. The 
vorticity equation for inviscid flow is given by Batchelor (1970, ch. 5) : 

DQ 
Dt 
- = (Q.V)u. 

The vorticity Q may be written as the sum of a mean fluctuating component 

0 = s2+0’, 
and similarly the velocity u may be written 

We obtain the equation for the perturbation from (12) 

u = B+U’ 

(13) DQ’ -= (a. V) u’ + (0’. V) ii, 
Dt 

neglecting higher-order terms. We express (1 3) in cylindrical polar co-ordinates 
(x, B, @) with unit vectors (ez, e,, eQ), noting that 

defined by the line source of strength m; and 

for the unperturbed vortex ring, which gives 

si = QeQ 

For an initially radial perturbation of the ring, the equation for the radial component 
of vorticitv is, from (14), 

which leads to 

where E,  F are constant. From (15) we see that, for a source flow (m > 0) ,  Sr i  is 
decreasing exponentially, and, for a sink flow (m < 0 ) ,  Qb grows exponentially. Thus in 
the contracting element any small perturbation in the ring radius will cause an 
exponentially growing component of radial vorticity. This will cause axial deforma- 
tions on the ring which could make major changes in the induced flow field. We might 
therefore conclude that expanding jet flows are stable to small perturbations whilst 
contracting jet flows are not. 

This could then account for the discrepancy between our results and those of Lau 
et al. (1972); the entrained vortex ring elements contract, become unstable and non- 
axisymmetric and thus modify the induced flow field. Furthermore, the effect of the 
embeded slower moving fluid which Lau, Fisher & Fuchs suggest causes the negative 
spikes in the axial velocity traces can only be modelled in a vortex-sheet-type model by 
a ‘kink ’ in the sheet. (This ‘ kink ’ causes vortex elements to be nearer the jet axis than 
the measuring station, and, whether stable or not, causes a decrease in axial velocity a t  

Qi = E exp [ - mt/cr2] + F ,  (15) 
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this measuring station.) However, consideration of our modelled flow (e.g. in figure 1 c 
a t  X I D  N 2-2) shows that, because the sheet is digitized, we are not able to model 
exactly the sheet when it becomes very thin. The layer here is then inadequately 
represented by just a single relatively concentrated vortex, which must then be drawn 
into the larger neighbouring concentrated eddies. This means that in our model the 
large eddies are perhaps more concentrated than in real jet flows and this explains why 
the r.m.s. levels of the axial and radial velocity fluctuations were larger than in real 
flows. 

We have clearly shown that if individual eddying motions are to be studied, radial 
rather than axial velocity signals must be used, especially in the mixing region. We 
have shown this to  be especially important when measuring eddy convection velocities 
from the velocity space-time correlations. The implication made when measuring 
velocity in this way, is that  the ‘phase ’ of exterior irrotational flow fluctuations moves 
a t  the speed of the eddies which cause them, i.e. the large eddics in the mixing region. 
As we have shown, this information is only contained in the radial velocity 
measurements. The measured values of the eddy convection velocities of the jet model 
show no apparent dependence on the forcing and approximately agree with the 
unforced jet measurement of U,/U, 2: 0-56. This is much lower than the local mean 
velocity UlU, N 0.65 (at RID = 0.5)) which is in disagreement with many experi- 
mental results (e.g. Wills 1964) where the measured convection velocity is much closer 
to  this local mean value. It does not seem likely that this discrepancy is caused by the 
velocity smoothing core, since this would then be expected to have the same effect on 
the mean local velocity. We have described the choice of the vortex core used to define 
the self-induced velocity which does fix some convection parameter of the flow, but 
we do not think that the discrepancy between the measured convection velocity and 
the local mean velocity is caused by a bad choice of core size. However, we can see that 
the calculated driving velocity (the convection velocity of a long cylindrical sheet 
composed of a single row of vortex rings, with the chosen core size) UJU, N 0.54 is close 
to  the measured eddy convection velocity. This is not surprising since we would not 
expect the shear layer to travel faster just because eddies have formed. It is possible 
that the effects of non-axisymmetry may also be important in real jets in the measure- 
ments for the correlation coefficients. 

We have attempted to model the axisymmetric jet in order to investigate the effect 
of forcing on the large eddy motion in the mixing region and to  interpret the experi- 
mentally observed behaviour of forced jets. At forcing levels higher than 0.02 yo of the 
jet exit velocity (Moore 1977) the observed response of the jet was nonlinear. It was 
then that the changes in broadband noise were observed, and the dramatic changes in 
eddy structure occurred. I n  our model jets, we have levels of forcing much higher than 
this. At A = 0.005 2: 0.35%) there was little response to the forcing; our 
inadequate modelling of the effects of the jet pipe has meant that  our required 
forcing levels are higher than those used in experiments. 

I n  his experiments, Chan (1974) forced a turbulent jet in the frequency range 
0.2 < S t  < 0.8; the measured response to forcing grew rapidly then decayed down- 
stream. At the higher Strouhal numbers the disturbances were confined to the first 
part of the mixing region, whilst a t  low Strouhal numbers the disturbance extended 
much further downstream. We can interpret this in terms of our results, where a t  high 
frequencies the eddies form more rapidly than a t  low frequencies and soon coalesce 
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and generate the subharmonic (the signal filtered at  the forcing frequency would there- 
fore decay). Chan also found that for high frequencies the centre-line signals are weaker 
than a t  low frequencies, which can also be interpreted in terms of the size of eddy 
generated. The disturbance most amplified was a t  St = 0.5 for the shear layer, and a t  
St = 0.35 on the jet centre-line. This latter measurement agrees with the measurements 
of Crow & Champagne who forced the jet a t  St = 0.3 and suggested that this is the wave 
least capable of generating a subharmonic and therefore the wave most capable of 
reaching a large amplitude before saturating. This is demonstrated in our model as the 
largest eddy forms further downstream when St = 0.3 than when X t  = 0.5, and it is 
bigger than the eddy which forms immediately downstream of the nozzle when St = 0.5. 

Thus we suggest that  the nonlinear saturation occurs once the eddy structure is 
formed, and the filtered response decays once this eddy loses its identity. The results 
of Moore (1977)  suggest that the broadband noise increase (at St N 0.5), and the 
decrease (at St > 1.5) are associated with these changes in eddy structure. The natural 
periodicity of the model jet was St N 0.47, and when forced a t  approximately this 
frequency, the jet was most sensitive. Much larger eddies formed earlier here than in 
the jets forced a t  higher frequencies. The jet development was also more ordered in the 
resulting absence of coalescence. Our study of the coalescence process (Acton 1976) 
suggested that it was an abrupt large-scale and therefore noisy event and it seems clear 
the reduction of the size of the eddies makes the pairings much less violent. I n  fact, a t  
St = 0.5 we have seen from further computation (not shown) that a coalescence is 
about to occur a t  X I D  = 4.0 which would be a much larger motion and possibly a more 
regularly occurring event than that observed in the jets excited a t  high frequencies. 
The eddies which form when the jet is forced a t  high frequencies are much smaller than 
in the unforced jet and several smaller-scale interactions take place, resulting in a less 
regular, less well correlated eddy structure and thus might be associated with the 
observed decreases in broadband noise. 

6. Conclusions 
We have attempted to model numerically some features of turbulent jet flows. The 

model is axisymmetric, inviscid and restricted to the large-scale motions. The model 
jet shows many of the features observed in real jet flows. Discrepancies that do exist 
between our model results and those observed experimentally occur because the nozzle 
boundary conditions are not exactly satisfied and the flow is axisymmetric. We have 
shown that the contracting elements of jet vorticity are unstable and therefore axisym- 
metry is likely to be lost on the inside of the real jet mixing region. 

We have applied harmonic excitation to  the model jet. This changes the size and 
position of the first eddies that form and thus changes the location and frequency of 
any coalescence of the eddies. We have been able to show for these forced model jet 
flows that, in the Strouhal number range 0.3 < St < 2-0, a forcing of sufficient ampli- 
tude could excite jet eddies a t  the forcing wavelengths. When St = 0.3, these eddies 
were very large and formed after pairings, a t  X / D  2: 2.0. When the jet was forced a t  
St = 0.5, at  highest amplitude of forcing the large eddies formed a t  XID N 1.0 and 
persisted for several diameters downstream. At higher frequencies, these eddies which 
formed a t  the forcing frequency were small and quickly lost their identities by 
coalescence. This occurred nearer the jet-pipe exit when the amplitude was increased. 
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This behaviour is qualitatively consistent with many features of the non-linear large 
eddy behaviour observed in forced jets. 

The good qualitative agreeement that does exist between our model and experi- 
mentally observed jet flows leads us to  conclude that these flows have significant large- 
scale axisymmetric structure of the type we model. 
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